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The Discrete Variational Conformal Technique
for the Calculation of Strip Transtission-

Line Parameters

RODOLFO E. DIAZ

Abstract —This paper describes a new method of obtaining the transmis-

sion line properties of strip transmission lines whose geometrical configura-

tions would make them difficult to anafyze with other available techniques.

The Discrete Variational Conformaf (DVC) technique relies on conformai

transformations to obtain the simplest possible representation of the Green

function for the configuration of interest. This Green function is then used

with an assnmed charge distribution in the plane of the originaf configura-

tion, and in a novel variational expression for the modal capacitance. The

resulting equation is particularly well suited for numerical evahration.

Sample configurations are used to compare DVC to other techniques

Exact conformaf mapping, Method of Moments, Full Wave solutions, and a

Transverse Transmission Line Method. Two examples of application of

DVC to asymmetric configurations are given,

I. INTRODUCTION

T HE CALCULATION OF the impedance and cou-

pling parameters of strip transmission lines has been

one of the most fertile areas of published research in

microwave theory since the inception of the IEEE TRANS-

ACTIONS ON MICROWAVE THEORY AND TECHNIQUES. The

techniques available today to solve TEM or quasi-TEM

problems can be broadly classified as belonging to one of

the following classes:

1) exact, by direct conformal mapping, as in Cohn [1];

2) approximate, by conformal mapping, as in Cohn [2]

or Shelton [3];

3) approximate, by solution of the total field, as in finite

difference relaxation or network analogues;

4) approximate, by method of moments (MoM) with

exact Green function, as in Kammler’s approach [4];

5) approximate, by exact Green function with assumed

charge distribution and variational capacitance expres-

sions, as in Koul and Bhat’s transverse transmission line

method (TTLM) [5] or Das and Prasad [6];

6) approximate, by spectral domain or full wave method

with e;;ct Green” f~nc~ion, as in Itoh

Davies and Mirshekw-Syahkal [8];

7) approximate, by finite elements;

8) approximate, by exact conformal

the boundary with numerical solution

Levy [9].

and Mittra [7] or

transformations of

of the field, as in
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The relative merits and drawbacks of most of these

methods have already been pointed out in detail in the

literature by several authors, and will not be discussed

here. Instead, the justification for the new method lies in

the general limitations of validity (or convenience) of the

methods listed above. For instance, Kammler’s method can

be modified to include multiple dielectrics, but the price

paid is an even slower computer run-time than in the

homogeneous case. A viable alternative is to use the free-

space Green function and to account for the dielectrics by

solving for the polarization charges on their interfaces [10];

thus simplifying the problem, but increasing the computa-

tional load. On the other hand, Koul and Bhat’s TTLM

(which uses Crampagne’s [11] Green function) and the Full

Wave-Spectral Domain solutions, can handle multiple di-

electrics readily, but they require boundary side-walls (see

Fig. 1) to solve the problems. These side-walls and the

requisite Fourier Sum form of the solution can be incon-

venient in two ways:

First, most microwave circuit boards consist of many

components printed on the same substrate, almost none of

which are close to boundary walls. To approach this limit,

the above mentioned methods must make the side-wall

separation tend to a large value relative to the ground

plane spacing, which in turn requires the Fourier sums to

include more terms to achieve convergence. Second, when

the strips are small compared to the side-wall separation,

the Fourier sum will again require many more high-

frequency terms to accurately represent the rise to infinity

of the charge density at the edges of the strips.

The question of convenience and computer time can be

illustrated by considering the solution for the structure of

Fig. 2(a), the coupled trough--lines, or, even worse, Fig.

2(b); two structures in which the boundaries are not exclu-

sively of the parallel plane type. Clearly, for MoM or

Spectral Domain to analyze such a configuration would

require treating the middle fin as another conductor. The

asymmetric geometry of Fig. 2(b) rules out the possibility

of simplifying the problem by calling the slot either an

electric or a magnetic wall for the mode of interest.

In the body of the paper, DVC is first introduced by

solving the configuration of Fig. 2(a) and outlining its

extension to the problem of Fig. 2(b). The more practical

case of Fig. 3 is then solved. This solution is then used to
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Fig. 1. Inhomogeneous stripline structure analyzable by full wave or
spectral domain techniques with boundary side walls separated by the
distance A.
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Fig. 2. Coupled trough lines: (a) Symmetric case. (b) Asymmetric case.

7///////////////////////////////////////////

<I
l—w+

F//.,J,,JAJA

‘2
I

s

V,J,J,,,,,,J

‘1 -11-
Edga SePmt,on

/////////////////////////////////////////// ///

b

Fig. 3. Offset-coupled stziplines withinhomogeneous dielectric.

compare DVC to other methods by solving for special

cases which are, theoretically, within the bounds of validity

of the different techniques involved.

It is shown that DVC is a useful complement to pre-

sently available techniques in solving TEM or Quasi-TEM

problems when the geometry is not simple, while the

resulting computer program is small and fast enough to

run on a personal computer.

II. THE SLOT-COUPLED TROUGH LINES

The purpose of this exercise is to illustrate DVC with a

moderately complicated geometry which, in appropriate

limits, can be analyzed by other methods. Thus, it is seen

that in the limits of slot-width equal to zero and to infinity,
the configuration of Fig. 2(a) reduces to the odd-odd and

the even-odd modes of a four-strip transmission line as

analyzed by Koul and Bhat [5] and also solvable by

Kammler’s method. Since only the even mode of this

structure is not covered by Koul and Bhat’s ‘ITLM equa-

tions (the odd mode has an electric wall in the plane of

715

XY mane KY, Mane,,. ....,,
B/c k. ‘“ ...., *

~ ..1:............!7.?....‘ ;,’ ‘...$,

q+,” -%,
. . +------- .- /?/////////////,’77-

A’ Slot D
/c A. slot DCB A

(a) (b)

M&qnetic————
wall t A

I
7,,,,,,,fl Electric Wall S-Y,, Plan,>

. . ~,ne ~=”o

Line X=x.
//////////////// #

------ .-.. DCB A

(c)

Fig. 4. Successive conformal transformations of the coupled trough
lines of Fig, 2(a). (a) Originaf plane. ~) First map. (c) Second map. The
successive deformations of the coordinate grid are illustrated by follow-
ing the lines x = XO, y = yO.
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Fig. 5. The image charge system for a line charge in the presence of the
boundary of Fig. 4(c).

symmetry thus reducing the slot-width to zero) onl:y this

mode needs to be solved for the purpose of this illustration.

The first step is to find the Green function. Fig. 4(a)

shows the labeling of the vertices for the Schwarz–

Christoffel mapping. Fig. 4(b) shows the result of this first

transformation. To every charged point on the strip of Fig.

4(a), there is a corresponding charged point of equal

strength in Fig. 4(b). If we were interested in the odd mode

of the structure, we would stop at this point since then the

line A’D would be a zero potential and the Green function

for a charged point above a flat ground plane is trivial.

However, for the even mode another transformation is

necessary to take Fig. 4(b) into Fig. 4(c). Again, all the

charged points are merely redistributed in the new plane

and the Green function for the even mode is elementary.

For a charged point in the presence of the boundary of Fig.

5, the Green function is just

( )rl. r2

2m ln
v== —

r3. r4
(1)

Now, it is shown in the Appendix that the following

expression for the capacitance is variational:

C=J
P(X) dx

‘j p(x’)~(x,x’)d~’

(2)

x’
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Fig. 6. Design curves for a pair of coupled trough lines.

where x, x‘ are points along the strip and V(x, x’) is the

potential function normalized to a charge density of

1 coulomb/meter. This expression can be evaluated from

its discrete analogue along the surface of the strip

c=:+ (3)
n

where q. is the charge on the n th section of the strip and

V. is the potential on the n th section of the strip.

Because the potential function is transferred unaltered

from one mapping to the next, as is the charge of a point,

the computer program to perform this calculation merely

has to perform the following steps.

1) Assume a charge distribution on the strip in the real

configuration plane. A good charge distribution in most of

these planar structures is just Maxwell’s expression for the

charge distribution on an isolated strip

P(x)=*, .=StripWidth. [4)

2) Make this charge distribution discrete by evaluating it

at N points and calling these points fixed charges.

3) Calculate from the conformal maps the connecting

equations between positions in the real XY plane and the

X“Y” plane of Fig. 4(c) (this usually only involves elemen-

tary functions).

Z.mm

A F

W-mlm

d,
=N

(w. B)(w-E)
dw (w- A)(w-D) (w-F)
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Fig. 7. Two possible ways of mapping the boundary of Fig. 2(b) onto a
ground plane.

4) By summing over the strip in the X’)y” plane,

calculate the potential at a point adjacent to each of the N

fixed charges.

5) Perform the sum of (3), where V. and q. are the

potential and charge in each section of the strip.

Since the computer is only performing elementary func-

tion calculations and bookkeeping, the resulting program is

extremely fast and inexpensive to run. The high speed of

evaluation means that the analysis program can be used to

synthesize a desired configuration by simple iteration. As

an example, Fig. 6 is a plot of the strip width and slot

width of the coupled lines of Fig. 2(a) as a function of Zoe

(the even-mode impedance) for the matched system re-

quirement that ~~ = 50 Q (the assumed system

impedance).

To analyze the configuration of Fig. 2(b), a different

conformal map is required. The bottom of the trough could

be removed by using images, leaving a boundary that is

easy to map (no right angles are involved) onto a flat

ground plane. Alternatively, the bottom of the trough can

be included by a map similar to the one used above, which

has only one right angle. These two choices and their

mapping derivatives are shown in Fig. 7. Now, two strips

are involved instead of one but the computer algorithms

are the same as before. The total potential is calculated at

discrete points along the surface of each strip and (3) is

used again. Clearly, the method does not require the strips

to be of equal size although, as it was seen in the first

example, it is easy to take advantage of any symmetries

involved.

III. OFFSET-COUPLED LINES WITH ARBITRARY

CENTER DIELECTRIC

With the application of the exponential mapping to

configuration of Fig. 3, one can obtain Fig. 8. Thus,

the

the

Green function that we are looking for is-that of a line

charge in the presence of a dielectric wedge and a grounded

plane. The motivation for going into the mapping plane to

obtain the Green function is the following: When E* = c~,

the system reduces to the homogeneous case whose Green

function is simple in the mapping plane (line charge above
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Fig. 8. Result of applying the exponential mapping to Fig. 3.

ground) while it is rather complicated in the original plane

(see Karnmler [4]). Therefore, it is to be expected that the

Green function for the inhomogeneous case will likewise be

simpler. Once the problem is solved, this fact is proven.

Following the technique of Lewis and McKenna [12], the

Boundary Value problem is solved via Mellin transforms.

For reasons that will become clear later, we choose to place

the charge at the point indicated in Fig. 9, and to let it

approach the interface from the ‘outer dielectric. All poten-

tials are normalized to the unit charge in the outer dielec-

tric so that in the homogeneous case, the potential due to a

line charge above a ground plane would be

u = (1/2ti)*ln(rl/r2) (5)

/
Ill /’

//

1’

Fig. 9. Geometry used to find the Green function of Fig. 8.

Then, the solution of the inhomogeneous problem in the

three regions of Fig. 9 must be

I V=ij+llsin(sfl), o<e<a

II fi=ij+Csin[s(n/2 -d)]+ Dcos[s(T\2- d)],

~~e<qr—a
III U=ill+E sin[s(w -6)], ~–a-=e<w. (9)

Matching boundary conditions at the two interfaces for

the potential and the normal component of its derivative

readily gives the expressions for the factors C and D as

(1- q)sin(sa)sin(sy ){cos[s(~- a)] +COS(.NX)}

C= 2ssin(s7r){cos( sa)sin[s(7r/2- a)] + qsin(,sa)cos [s(r/2- a)]}

(1- q)sin(sa)sin(s-f ){cos[.s(7r - a)] -cos(w)}

‘= 2ssin(s7r){cos( sa)cos[s(~/2- a)] - qsin(sa)sin[s(r/2- a)] }
(,10)

where rl and r2 are the distances from the observation

point to the charge and its image.

Lewis and McKenna ~12] separate the problem into two

parts. First, the homogeneous problem is solved. Then the

solution to the inhomogeneous problem is expressed as the

potential from the homogeneous part (the line charge) plus

an added term (the dielectric polarization). Since the

Mellin transform is given by

U(d,s) =~wrs-h(r,d) dr (6)

Poisson’s equation for a delta function charge at r =1,

@= y, becomes

ir’+s%=+(e,y) (7)

which has a solution of the form ((7) of [12])

(’sin [s(T-y)]sin(st? )/[s,sin(s7r)]\

{

o<e<y
ij(e, s) =

}

. (8)
sin(sy)sin[s(7r – 6)]/[s. sin(s7r)]

( y<o<7r

where q = Cz/cl, and y ~ a.

Since we are only interested in the potential on the

interface, all we want is the solution in region II. This is

accomplished by knowing C and D and applying the

inverse transform. (If we are interested in calculating con-

ductor losses, B and E can be obtained directly from C

and D.) It is to be noted that the method of solution from

here on differs from that of [12] in that the part of the

solution due to the charge in the homogeneous medium is

not absorbed into the potential of region II. Instead, we

separate it explicitly, because its inverse Mellin transform

is trivial (it must give the Green function of a l@e charge

above a ground plane). This method of solution has

the advantage of physical interpretation. Once the inverse

Mellin transform is performed, we are left in region II with

three terms: the first is the line charge term, or (5); the

second is the symmetric part of the dielectric polarization;

and the third is the antisymmetric part of the dielectric

polarization. Thus, the contribution of the dielectric to the

potential along the face on which the charge resides is just

the sum of the second and third terms, while its contri-

bution on the other face is the difference of these terms.
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TABLE I
DEVELOPMENTOFTHEEXPLICIT FORM OF(12)

The Zeros of the Dummmators of Equt,o.$ (10) are of Four Klnd$

(a)

(b)

(c)

(d)

Iors= sdo = Odd

numo = -2 cos (w)
den. = .(-1) ICOS(S.Ico%[$(j - .)1 -q sm(sti) $cn[s(~-.)ll

fors=sd=sdo+<l

“Unld = cm [,(. -.)] cm(w)

{}{”}
dQnd. .,,,(s,) [CCX(WINn [$..)] &(T m) +sm(wd cos ls(~-oll q~+.(1 4 ]

for $ = we = Eve”

“Urne = +2 co,(m)
dene = .(+11 [cm(w) s(n [$ -cdl + q sin(w) cm [$ ..)]]

fors=sc=sce+.t~

‘“~““s’s(n-”)’+co’(=]z{ } { “ }den c=+s,,(s.) [cm(a) ms[<-.)] +-.(1 II) -m(m) m ls(~-.)l v~+dh) I

Th8n, the Polar,zauon Pmenrw hasa Symrnetm Part Gwen by,

(17) sln[%l S10(S7) ‘“mk
(e) ~jo,d z, d~

Cos[s(; +)1 r-$

and an A.tlsymmetrlc Part Gwen by.

(f) ~:e ,
(171 sin(w) sm(s~) ~

Sm[s(; -’9)1 r-$s

The inverse Mellin transform is given by

V(r, tl) = +f:wjw’~~ (11)

which is evaluated by the residue theorem. Thus, the poten-

tial due to the dielectric is given by

~Dcos[s(w/2- 8)]r-’+ ~ Csin[.s(r/2-6)] r-’
Res Res

(12)

where the positive sign is taken for O = a, the negative sign

for 0 = T – a. Using (10), the expression for the polari-

zation potential is obtained. The results are summarized in

Table I.

As Table I shows, all that needs to be done now is to

find the zeros of (b) and (d) of Table I. Since the original

motivation for solving this problem was to obtain design

equations for the case c~ < c1 or ~ <1, we chose to place

the charge as shown in Fig. 9, in the outer dielectric. This

allows the use of an efficient routine for finding the zeros

of the equations as follows:

If q is close to 1.0, say 1.0 – 8, then (1 and (z in (b) and

(d) of Table I are small.

By using the Taylor expansion of the trigonometric

functions, it is easy to show that (1 and (z are
A.

l’, = ~ sin(sdo. a)cos(.sdo. a)

(,= ~ sin(sce .a)cos(sce. a). (13)

Now successive approximations can be obtained by per-

forming the following steps:

(a) Let

28 sin(sd. a)sin[sd(7r/2– a)] +cos(.rd. n/2)
gnl = ;

sin ( sd o7T/2)

(b) then sd = sd + gn~ return to (a)

(c) Let

28 sin(sc- a)cos[sc(7r/2– a)] –sin(sc.7r/2)
fnl = ;

Cos (Sc . %-/2)

(d) then sc = sc + fn~ return to (c). (14)

Iterating 20 times is enough to guarantee the location of

the zeros to better than 0.005 even in the extreme case of

q = 0.1 (successive zeros are separated at least by 1.0). At

this point it becomes clear why we chose to place the

source charge outside the central wedge. This way, the

quantity (1 – q) is always less than 1.0 and the search for

the zeros converges readily. If we were interested in the

suspended substrate case c~ > Cl, q >1, then it would be

best to solve for the Green function with the charge inside

the central wedge. When the zeros have been found, the

problem is solved.

To implement the program, the polarization potentials

are calculated for the geometry and the q desired. These

are splined as potential-as-a-function-of-distance in the

real configuration space. Then the same routine used for

the trough lines is used; with the polarization potential

being obtained from the spline and the line charge poten-

tial from the expression (1/2~) * lrn(rl/rJ in the mapping

plane. The impedances and effective dielectric constants

are obtained from the classic equations

1
z=

c{=

cd
Ceff = —

co
(15)

where c is the speed of light, CO is the capacitance in the

absence of the dielectric, and Cd is the capacitance in the

presence of the dielectric.

It is to be noted that for almost any configuration

having striplines between parallel planes, Maxwell’s distri-

bution of charge is a good approximation. Intuition tells us

that it would not be so for the configuration of Fig. 8;

however, the conformal mapping has taken care of the

situation. Since the positions of the discrete charges are

picked at uniform intervals along the strips in the plane of

Fig. 3, when the conformal transformation is applied, the

points redistribute themselves on the new strips at nonuni-

form intervals to give a more realistic charge density distri-

bution appropriate for Fig. 8.

There are at this point two sources of error. The first is

the finite number of charged points chosen to describe the

continuous charge distribution. The second is the fact that

an approximate charge distribution has been chosen. The

first will be addressed in the section below called Special

Cases. The second is a compromise.

It is conceivable to pick different charge distributions to

calculate the even-mode impedance, the odd-mode imped-

ance, and the self impedance of the striplines in question.

This would require three separate calculations. However,

since the object of a variational approach is to obtain a
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TABLE II
PERCENTDEVIATION OFTHEVALUE AT CONVERGENCE FROM THE

EXACT VALUE FOR Two EXTREME CASES OF FIG. 10

EMoM

TTLM

Dvc

Dvc-s

W=o.lo
s = 0.05

0.1o%

4.50??

1.36%

0.79%

w= 1.0
s = 2.0

0.28%

2.26%

0.42%

0.45%

good answer with a minimum of work, it is a reasonable

expectation that one charge distribution be enough to

calculate all impedances in question. This is what we have

chosen to do, and the natural candidate for this all-purpose

charge distribution is Maxwell’s distribution for an isolated

strip.

When a stripline component such as a symmetric coupler

is to be designed, the geometry of the strips goes through a

wide range of variations. To take full advantage of the one

computer program in dealing with the whole design range,

it is desirable to minimize the error introduced by the

approximate charge distribution for that particular range.

A method that works in practice is to modify the DVC self

impedance of the isolated strip in the given stripline en-

vironment by a perturbation factor that will bring the

DVC result as close as possible to the exact value of the

self impedance of the isolated strip (as obtained by confor-

mal mapping). One such factor is given in (16) and the

effect of using this kind of self-impedance correction on

the DVC results is seen in Table II by comparing the

results labelled DVC with the corrected result labelled

DVC-S.

~=1+0.01.(1.363~(&~+0.54 -1). ,16,

In (16), the parameters are as illustrated in Fig. 3. This

factor guarantees that the DVC self impedance of a strip

symmetrically placed between ground planes (s= O) will

agree with the theoretical value, to better than 0.1 percent,

Up to w/b= 4.

To check the validity of the DVC solution, several

special cases can be solved. The results are presented in the

next section. Note that since the results only depend on

relative dimensions, the units of length have been omitted.

Most test cases were done assuming typical ground place

spacings of 72 roils (1.829 mm) and a center substrate

thickness of 10 nils (0.254 mm).

III. SPECIAL CASES

First, the case of Fig, 10 is solved. The symmetric

homogeneous striplines have an exact conformal map solu-

tion.

Three computer programs will be compared on this

problem. A program based on Kammler’s MoM [13], a

l//////////////////////H//////////////////////////// ““P
I

t-’+”+ It t,
C,= 1

~~k
Fig. 10. The symmetric edge-coupled striplines.
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Fig. 11. The progression to convergence for two extreme cases (of Fig.
10 for MoM ‘ITLM and DVC. The values at convergence are shown.

program based on Koul and Bhat’s TTLM equations, and

a DVC program. Two extreme cases of the configuration of

Fig. 10 will be evaluated. The first is strips 0.1 units wide

separated by 0.05 units, with a ground plane spacing of 1.0

units. The second is strips 1.0 units wide separated by 2.0

units, with a ground plane spacing of 1.0 units. The quan-

tity to be computed is the system impedance or ~=ZO~~.

Fig. 11 shows how each method approaches convergence

as a function of CPU time spent. The ordinate of the graph

shows the percent deviation from the final convergence

value. Kammler’s MoM iterates four times. First it cuts

every strip in two parts, then in four, and finally in six,

then it extrapolates to a final solution. The TTLM method

achieves convergence by using an increasing number of

Fourier components. The DVC method achieves conver-

gence by dividing the strips into more parts.

Table II shows the percentage of error between the final

value obtained at convergence and the exact conforrnal

mapping value.
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Fig. 13. Numerical solution of offset-coupled striplines in the wide

strip limit.
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Fig. 14. Numerical solution of offset-coupled striplines in the small
strip limit.

The practical requirement of less than l-percent error for

typical design configurations is easily met by the DVC

method at the expense of very little CPU time.

The next test is to compare results for various techniques

applied to broadside-coupled strips in the homogeneous
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Fig. 15. Numerical solution of a suspended substrate configuration with

substrate dielectric constant C. = 1.2.

case. Fig. 12 is a comparison between MoM, TTLM, and

DVC. The results are virtually identical.

Then, Shelton-offset-coupled lines in a homogeneous

medium are checked. In the large strip limit, MoM, DVC,

and Shelton’s equations are compared in Fig. 13. In the

small strip limit, MoM and DVC are compared in Fig. 14.

Finally, the suspended substrate for a center dielectric

constant of 1.2 is checked using DVC, CSS [14], and the

Coupled Suspended Substrate routines of Supercompact

[15] for the case of wide strips (worst case for DVC). The

results are given in Fig. 15. Over the range of specific cases

tested, the DVC-based program performs as well or better

than the other techniques.

IV. TWO-DIELECTRIC SHELTON OFFSET-COUPLED

LINES

DuHammel Magic-T’s are known to exhibit less than

ideal isolation due to the difference in mode velocities

when the lines are abruptly separated at the end of the T

[16]. It has been proposed and empirically observed that by

lowering the center dielectric constant in this region, these

velocities can be equalized and the isolation improved. A

feasible tradeoff is to print the whole circuit in a configura-

tion with a lower center dielectric constant and to tolerate

the slight dispersion along most of the line (which is low

because the coupling is low) to achieve the benefit of

equalized velocities at the discontinuity. Such a Magic-T

has been designed and its experimental characteristics are

described in a companion paper [17].

The design is achieved as follows. Starting from the

broadside-coupled case, the strip widths are fractionally

increased and the DVC program is iterated until an offset
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Fig. 16. Design curves for a possible two-dielectric offset-coupled strip-

line configuration.

is found which brings the system impedance back to 50$2.

The widths are again increased and the cycle repeats, until

the strips are decoupled. Because of the speed of program

execution, the table of widths, offsets, and impedances can

be made as precise as possible (the values only need to be

better than the manufacturing tolerances) and the results

then splined for use in the design program.

Fig. 16 is a plot of width and offset versus even-mode

impedance of a possible geometry. When the strips are

fully overlapped in this inhomogeneous case, the imped-

ance as a function of a strip width can be compared to the

calculations of Koul and Bhat [18] and those of Bahl and

Bhartia [19]. The results are equivalent within the error

bounds observed in Table II.

V. CONCLUSIONS

Certain boundary value problems with a low degree of

symmetry, which arise in the design of strip transmission-

line components are best solved by transforming the con-

figuration in question to a new plane where the Green

function is easier to evaluate. It is then straightforward to

take advantage of the bookkeeping abilities of computing

machines to calculate the desired parameters. In practice,

an expression for charge on a strip equal to Maxwell’s

result for an isolated strip is used in the planar geometry.

A typical strip is segmented into 80 parts and the charge is

evaluated on the odd numbered sections, while the poten-

tial is evaluated on the even numbered sections. By using a

new variational expression for the capacitance as a discrete

sum of elementary capacitances, the results obtained from

the computer program are fast and accurate to better than

1 percent in the design range of interest.

APPENDIX

THE CAPACITANCE EXPRESSION

Consider the following quantity, where f(x, x’) is the

potential function with source at x and observer at x’

“J
p(x)dx

&=

‘/ P(x’)f(x,x’)d~’”

(Al)

x’

Then define

J
PO(X) dx

w=

‘0 ‘/po(x9f(x,x)dx

(A2)

x’

with the property that

~p.(x)f(x,x,)dxt=vo and ~po(x,)dx=Qo (A3)
x’ x’

where VO is independent of x, and so that EO= C<,, the

exact capacitance. Now let

P(x) +Po(x)+ @(x) (A4)

so that by (Al)

s+13E

J
po(x) 8p(x)

. — dx

‘~po(x)f(x,x)dx+j ~p(x)f(x,x)dk
x’ x’

(A5)

and by (A3)

1
E+8E”~

J

po(x)+ilp(x)

rSp(x’)f(x, x’)dx’
dx. (A6)

0 ‘1+
J

x’ V.

Since the denominator is of the form 1 + c, c ~ 0, ex-

pand in a Taylor series up to first order

(J ap(x’)f(x, x’)
. l–

))

dx ‘ dx
v.

(A7)
x’

which becomes

8p(x’)f(x, x’)dx’dx

-; JPo(x)~, v
ox 0

bp(x’)f(x, x’)dx’dx

-; JW)J’, J/ (A8)
ox 0

where, by interchanging the order of integration we obtain

Q. ~Q
E+ AE=7+Y

o 0

jpo(x)f(x,x’)dxdx’

-; J6P(X’) x v
* x’ 0

1

-J.l

8p(X) ~p(x’)f(x, x’) dxdx’
.

V. X*. V.
(A9)
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and by (A2)

-;~/@(x)@(x’)f(x, x’)~x~x’ (Ale)
0 x x’

or

Q. ~Q 8Q 1
~, (term of order@2)E+8E=T+T– T–—

0 0 00

(All)

thus

E+tlz= E. +0(2) = co + o(2). (A12)

That is, 8E is O(2).

Therefore, if E is the capacitance, then a variation in

p(x), the charge density, gives only a second-order varia-

tion in E. =- is variational and different from the usual

~= [JP(x)dx]2

JJP(.)P(.’)f(.> .’)~.”.’” ‘*13)

Physically, E corresponds to a parallel sum of elementary

capacitances.
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