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The Discrete Variational Conformal Technique
for the Calculation of Strip Transmission-
Line Parameters

RODOLFOE. DIAZ

Abstract —This paper describes a new method of obtaining the transmis-
sion line properties of strip transmission lines whose geometrical configura-
tions would make them difficult to analyze with other available techniques.
The Discrete Variational Conformal (DVC) technique relies on conformal
transformations to obtain the simplest possible representation of the Green
function for the configuration of interest. This Green function is then used
with an assumed charge distribution in the plane of the original configura-
tion, and in a novel variational expression for the modal capacitance, The
resulting equation is particularly well suited for numerical evaluation.
Sample configurations are used to compare DVC to other techniques:
Exact conformal mapping, Method of Moments, Full Wave solutions, and a
Transverse Transmission Line Method. Two examples of application of
DVC to asymmetric configurations are given.

I. INTRODUCTION

HE CALCULATION OF the impedance and cou-

pling parameters of strip transmission lines has been
one of the most fertile areas of published research in
microwave theory since the inception of the IEEE TRrANs-
ACTIONS ON MICROWAVE THEORY AND TECHNIQUES. The
techniques available today to solve TEM or quasi-TEM
problems can be broadly classified as belonging to one of
the following classes:

1) exact, by direct conformal mapping, as in Cohn [1];

2) approximate, by conformal mapping, as in Cohn [2]
or Shelton [3];

3) approximate, by solution of the total field, as in finite
difference relaxation or network analogues;

4) approximate, by method of moments (MoM) with
exact Green function, as in Kammler’s approach [4];

5) approximate, by exact Green function with assumed
charge distribution and variational capacitance expres-
sions, as in Koul and Bhat’s transverse transmission line
method (TTLM) [5] or Das and Prasad [6];

6) approximate, by spectral domain or full wave method
with exact Green function, as in Itoh and Mittra [7] or
Davies and Mirshekar—Syahkal [8];

7) approximate, by finite elements;

8) approximate, by exact conformal transformations of
the boundary with numerical solution of the field, as in

Levy [9].
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The relative merits and drawbacks of most of these
methods have already been pointed out in detail in the
literature by several authors, and will not be discussed
here. Instead, the justification for the new method lies in
the general limitations of validity (or convenience) of the
methods listed above. For instance, Kammler’s method can
be modified to include multiple dielectrics, but the price
paid is an even slower computer run-time than in the
homogeneous case. A viable alternative is to use the free-
space Green function and to account for the dielectrics by
solving for the polarization charges on their interfaces [10];
thus simplifying the problem, but increasing the computa-
tional load. On the other hand, Koul and Bhat’s TTLM
(which uses Crampagne’s [11] Green function) and the Full
Wave-Spectral Domain solutions, can handle multiple di-
electrics readily, but they require boundary side-walls (see
Fig. 1) to solve the problems. These side-walls and the
requisite Fourier Sum form of the solution can be incon-
venient in two ways:

First, most microwave circuit boards consist of many
components printed on the same substrate, almost none of
which are close to boundary walls. To approach this limit,
the above mentioned methods must make the side-wall
separation tend to a large value relative to the ground
plane spacing, which in turn requires the Fourier sums to
include more terms to achieve convergence. Second, when
the strips are small compared to the side-wall separation,
the Fourier sum will again require many more high-
frequency terms to accurately represent the rise to infinity
of the charge density at the edges of the strips.

The question of convenience and computer time can be
illustrated by considering the solution for the structure of
Fig. 2(a), the coupled trough-lines, or, even worse, Fig.
2(b); two structures in which the boundaries are not exclu-
sively of the parallel plane type. Clearly, for MoM or
Spectral Domain to analyze such a configuration would
require treating the middle fin as another conductor. The
asymmetric geometry of Fig. 2(b) rules out the possibility
of simplifying the problem by calling the slot either an
electric or a magnetic wall for the mode of interest.

In the body of the paper, DVC is first introduced by
solving the configuration of Fig. 2(a) and outlining its
extension to the problem of Fig. 2(b). The more practical
case of Fig. 3 is then solved. This solution is then used to

0018-9480 /86 /0600-0714801.00 ©1986 IEEE



DAIZ: CALCULATION OF STRIP TRANSMISSION-LINE PARAMETERS

w-lw—l‘rﬁ-:-lw*

A

Fig. 1. Inhomogeneous stripline structure analyzable by full wave or
spectral domain techniques with boundary side walls separated by the
distance A.
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Fig. 3. Offset-coupled striplines with inhomogeneous dielectric.

compare DVC to other methods by solving for special
cases which are, theoretically, within the bounds of validity
of the different techniques involved.

It is shown that DVC is a useful complement to pre-
sently available techniques in solving TEM or Quasi-TEM
problems when the geometry is not simple, while the
resulting computer program is small and fast enough to
run on a personal computer.

II. THE SLoT-COoUPLED TROUGH LINES

The purpose of this exercise is to illustrate DVC with a
moderately complicated geometry which, in appropriate
limits, can be analyzed by other methods. Thus, it is seen
that in the limits of slot-width equal to zero and to infinity,
the configuration of Fig. 2(a) reduces to the odd-odd and
the even-odd modes of a four-strip transmission line as
analyzed by Koul and Bhat [5] and also solvable by
Kammler’s method. Since only the even mode of this
structure is not covered by Koul and Bhat’s TTLM equa-
tions (the odd mode has an electric wall in the plane of
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Fig. 4. Successive conformal transformations of the coupled trough
lines of Fig. 2(a). (a) Original plane. (b) First map. (c) Second map. The
successive deformations of the coordinate grid are illustrated by follow-
ing the lines x = x,, y = y,.
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Fig. 5. The image charge system for a line charge in the presence of the
boundary of Fig. 4(c).

symmetry thus reducing the slot-width to zero) only this
mode needs to be solved for the purpose of this illustration.

The first step is to find the Green function. Fig. 4(a)
shows the labeling of the vertices for the Schwarz—
Christoffel mapping. Fig. 4(b) shows the result of this first
transformation. To every charged point on the strip of Fig.
4(a), there is a corresponding charged point of equal
strength in Fig. 4(b). If we were interested in the odd mode
of the structure, we would stop at this point since then the
line A’D would be a zero potential and the Green function
for a charged point above a flat ground plane is trivial.
However, for the even mode another transformation is
necessary to take Fig. 4(b) into Fig. 4(c). Again, all the
charged points are merely redistributed in the new plane
and the Green function for the even mode is elementary.
For a charged point in the presence of the boundary of Fig.
5, the Green function is just

- ryer
V=—qln( L 2).

2me ryr,

(1)

Now, it is shown in the Appendix that the following
expression for the capacitance is variational:

p(x)dx
x fx’p(x’)V(x, x')dx’

C= (2)
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Fig. 6. Design curves for a pair of coupled trough lines.

where x, x” are points along the strip and V{(x, x’) is the
potential function normalized to a charge density of
1 coulomb /meter. This expression can be evaluated from
its discrete analogue along the surface of the strip

c-y ()

where g, is the charge on the nth section of the strip and
V, is the potential on the nth section of the strip.

Because the potential function is transferred unaltered
from one mapping to the next, as is the charge of a point,
the computer program to perform this calculation merely
has to perform the following steps.

1) Assume a charge distribution on the strip in the real
configuration plane. A good charge distribution in most of
these planar structures is just Maxwell’s expression for the
charge distribution on an isolated strip

1

\/1_(2(x—aa/2))2 ’

2) Make this charge distribution discrete by evaluating it
at N points and calling these points fixed charges.

3) Calculate from the conformal maps the connecting
equations between positions in the real XY plane and the
XY plane of Fig. 4(c) (this usually only involves elemen-
tary functions).

p(x) = a = Strip Width. (4)
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Fig. 7. Two possible ways of mapping the boundary of Fig. 2(b) onto a

ground plane.

4) By summing over the strip in the X”Y” plane,
calculate the potential at a point adjacent to each of the N
fixed charges.

5) Perform the sum of (3), where ¥V, and ¢, are the
potential and charge in each section of the strip.

Since the computer is only performing elementary func-
tion calculations and bookkeeping, the resulting program is
extremely fast and inexpensive to run. The high speed of
evaluation means that the analysis program can be used to
synthesize a desired configuration by simple iteration. As
an example, Fig. 6 is a plot of the strip width and slot
width of the coupled lines of Fig. 2(a) as a function of Zoe
(the even-mode impedance) for the matched system re-
quirement that vZoe*Zoo =50 { (the assumed system
impedance).

To analyze the configuration of Fig. 2(b), a different
conformal map is required. The bottom of the trough could
be removed by using images, leaving a boundary that is
easy to map (no right angles are involved) onto a flat
ground plane. Alternatively, the bottom of the trough can
be included by a map similar to the one used above, which
has only one right angle. These two choices and their
mapping derivatives are shown in Fig. 7. Now, two strips
are involved instead of one but the computer algorithms
are the same as before. The total potential is calculated at
discrete points along the surface of each strip and (3) is
used again. Clearly, the method does not require the strips
to be of equal size although, as it was seen in the first
example, it is easy to take advantage of any symmetries
involved.

ITII. OFFSET-COUPLED LINES WITH ARBITRARY

CENTER DIELECTRIC

With the application of the exponential mapping to the
configuration of Fig. 3, one can obtain Fig. 8. Thus, the
Green function that we are looking for is that of a line
charge in the presence of a dielectric wedge and a grounded
plane. The motivation for going into the mapping plane to
obtain the Green function is the following: When €, =¢,
the system reduces to the homogeneous case whose Green
function is simple in the mapping plane (line charge above
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Fig. 8. Result of applying the exponential mapping to Fig. 3.

ground) while it is rather complicated in the original plane
(see Kammler [4]). Therefore, it is to be expected that the
Green function for the inhomogeneous case will likewise be
simpler. Once the problem is solved, this fact is proven.

Following the technique of Lewis and McKenna [12], the
Boundary Value problem is solved via Mellin transforms.
For reasons that will become clear later, we choose to place
the charge at the point indicated in Fig. 9, and to let it
approach the interface from the outer dielectric. All poten-
tials are normalized to the unit charge in the outer dielec-
tric so that in the homogeneous case, the potential due to a
line charge above a ground plane would be

u=(1/24)*In(r,/1,) s)

17

€2

Observation

Fig. 9. Geometry used to find the Green function of Fig, 8.

Then, the solution of the inhomogeneous problem in the
three regions of Fig. 9 must be

I v=9,+Bsin(sf), 0<0<a

Il ©=70,+Csin[s(w/2—8)]+ Dcos[s(n/2—8)],
a<f<g—a

r—a<f<w. (9)

Matching boundary conditions at the two interfaces for
the potential and the normal component of its derivative
readily gives the expressions for the factors C and D as

101 v, + Esin[s(7 —0)],

(1-1)sin(sa)sin(sy){cos[s(7 — a)] +cos(sa)}

~ 2ssin(s7){cos (sa)sin [s(7/2—

(1—n)sin(sa)sin(sy){cos[s(7 — a)] —cos(sa)}

a)] + nsin(sa)cos[s(7/2— a)] }

" 2s sin (s ){cos (sa)cos[s(m/2—

where r, and r, are the distances from the observation
point to the charge and its image.

Lewis and McKenna [12] separate the problem into two
parts. First, the homogeneous problem is solved. Then the
solution to the inhomogeneous problem is expressed as the
potential from the homogeneous part (the line charge) plus
an added term (the dielectric polarization). Since the
Mellin transform is given by

5(0,s) = fo ®rs=lu(r,8) dr (6)

Poisson’s equation for a delta function charge at r =1,
8 = v, becomes

1
77+ 52 =——358(0,7) (7)
27
which has a solution of the form ((7) of [12])
sin [s(7 —v)]sin(s0)/[ssin(s7)]
B(0,5)={ 0707 . ®

sin(sy)sin [s(7 —8)] /[s-sin(s7)]
y<<gw

a)] — nsin(sa)sin [s(7/2- a)]} (10)

where n=¢, /¢;, and v = a.

Since we are only interested in the potential on the
interface, all we want is the solution in region II. This is
accomplished by knowing C and D and applying the
inverse transform. (If we are interested in calculating con-
ductor losses, B and E can be obtained directly from C
and D.) It is to be noted that the method of solution from
here on differs from that of [12] in that the part of the
solution due to the charge in the homogeneous medium is
not absorbed into the potential of region II. Instead, we
separate it explicitly, because its inverse Mellin transform
is trivial (it must give the Green function of a line charge
above a ground plane). This method of solution has
the advantage of physical interpretation. Once the inverse
Mellin transform is performed, we are left in region 11 with
three terms: the first is the line charge term, or (5); the
second is the symmetric part of the dielectric polarization;
and the third is the antisymmetric part of the dielectric
polarization. Thus, the contribution of the dielectric to the
potential along the face on which the charge resides is just
the sum of the second and third terms, while its contri-
bution on the other face is the difference of these terms.
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TABLEI
DEVELOPMENT OF THE EXPLICIT FORM OF (12)

The Zeros of the Denominatars of Equations (10) are of Four Kinds
(a) fors=sdo=0dd

num, = -2 cos (sa)
deng = 7(-1) fcasfse) cos [s(% ~a}] ~qsnsed sm [s(% )}]

(b} fors=sd=sdo+§,

num = cos [s{x ~a)] ~ coslsa)
deny =~ sin(sn) [cos{sa) sin [s(%' ~a}] %~a(1 4;)} +sin(sa) cos [s(%»a)]{n%o of1 —n)}]

{c) fors=sce=Even

numg = +2 cos(sa)
deng = m(+1) [cos(sa) sin [s(—’z-r -al] +7 sinisa) cos [sg -a)] ]

@) fors=sc=sce+{y

numy = cos Is(z-a}} +cos(sa) . .
den =+ sin(s ) [cos(sa) cns[% —u)]{i -nH-n)} - sinfsa) sin [s (-Z- -a)] {n % +af I-n)}]
Then, the Polanzation Potenual has a Symmetric Part Given by,

© = (1) sm(sa) sy} "Mk
k=0,d ? deny

5 cos ls(lz' o) rs

and an Antisymmetric Part Given by.

1-n) si num
U] kfe,c (———2—1)5'"5(”)5'”(57) Hﬁf sinfsG 60 S

The inverse Mellin transform is given by

c+100_

v(8,s)r*ds (11)
which is evaluated by the residue theorem. Thus, the poten-
tial due to the dielectric is given by

RZ Dcos[s(m/2—-0)]r ¢ l; Csin[s(m/2—8)]r*
S (12)

where the positive sign is taken for 8 = a, the negative sign
for 8§ = 7 — a. Using (10), the expression for the polari-
zation potential is obtained. The results are summarized in
Tabile I.

As Table I shows, all that needs to be done now is to
find the zeros of (b) and (d) of Table I. Since the original
motivation for solving this problem was to obtain design
equations for the case €, <¢; or <1, we chose to place
the charge as shown in Fig. 9, in the outer dielectric. This
allows the use of an efficient routine for finding the zeros
of the equations as follows:

If 7 is close to 1.0, say 1.0— 4, then {; and ¢, in (b) and
(d) of Table I are small.

By using the Taylor expansion of the trigonometric
functions, it is easy to show that {; and {, are

1
v(r,0) ‘—‘2—

TiJe— 100

)
4= — sin(sdo- a)cos(sdo- a)

28
§$, = —sin(sce- a)cos(sce-a).
ki

(13)

Now successive approximations can be obtained by per-
forming the following steps:
(a) Let

, 28 sin(sd-a)sin[sd(7/2— a)] +cos(sd-m/2)
- sin (sd-7/2)
(b) then sd = sd + gnl; return to (a)

(c) Let
28 sin (sc-a)cos[sc(7/2— a)] —sin(sc-7/2)
T cos(sc-m/2)

(d) then sc = sc + fal; return to (c). (14)

Iterating 20 times is enough to guarantee the location of
the zeros to better than 0.005 even in the extreme case of
7 = 0.1 (successive zeros are separated at least by 1.0). At
this point it becomes clear why we chose to place the
source charge outside the central wedge. This way, the
quantity (1 — v) is always less than 1.0 and the search for
the zeros converges readily. If we were interested in the
suspended substrate case €, >¢€;, 7>1, then it would be
best to solve for the Green function with the charge inside
the central wedge. When the zeros have been found, the
problem is solved.

To implement the program, the polarization potentials
are calculated for the geometry and the n desired. These
are splined as potential-as-a-function-of-distance in the
real configuration space. Then the same routine used for
the trough lines is used; with the polarization potential
being obtained from the spline and the line charge poten-
tial from the expression (1/27)*1In(r, /r,) in the mapping
plane. The impedances and effective dielectric constants
are obtained from the classic equations

fnl

1
Z=———
CVCO.Cd
Cd
- 15
=@ (15)

o

where ¢ is the speed of light, C, is the capacitance in the
absence of the dielectric, and C, is the capacitance in the
presence of the dielectric.

It is to be noted that for almost any configuration
having striplines between parallel planes, Maxwell’s distri-
bution of charge is a good approximation. Intuition tells us
that it would not be so for the configuration of Fig. §;
however, the conformal mapping has taken care of the
situation. Since the positions of the discrete charges are
picked at uniform intervals along the strips in the plane of
Fig. 3, when the conformal transformation is applied, the
points redistribute themselves on the new strips at nonuni-
form intervals to give a more realistic charge density distri-
bution appropriate for Fig. 8.

There are at this point two sources of error. The first is
the finite number of charged points chosen to describe the
continuous charge distribution. The second is the fact that
an approximate charge distribution has been chosen. The
first will be addressed in the section below called Special
Cases. The second is a compromise.

It is conceivable to pick different charge distributions to
calculate the even-mode impedance, the odd-mode imped-
ance, and the self impedance of the striplines in question.
This would require three separate calculations. However,
since the object of a variational approach is to obtain a
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TABLE II
PERCENT DEVIATION OF THE VALUE AT CONVERGENCE FROM THE
Exact VALUE FOrR Two EXTREME CASES OF F1G. 10
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W=0.10 W=1.0
$ = 0.0 §=20
MoM 0.10% 0.28%
TTLM 4.50% 2.26%
DvCe 1.36% 0.42%
VeSS 0.79% 0.45%

Fig. 10. The symmetric edge-coupled striplines.

good answer with a minimum of work, it is a reasonable
expectation that one charge distribution be enough to
calculate all impedances in question. This is what we have
chosen to do, and the natural candidate for this all-purpose
charge distribution is Maxwell’s distribution for an isolated
strip.

When a stripline component such as a symmetric coupler
is to be designed, the geometry of the strips goes through a
wide range of variations. To take full advantage of the one
computer program in dealing with the whole design range,
it is desirable to minimize the error introduced by the
approximate charge distribution for that particular range.
A method that works in practice is to modify the DVC self
impedance of the isolated strip in the given stripline en-
vironment by a perturbation factor that will bring the
DVC result as close as possible to the exact value of the
self impedance of the isolated strip (as obtained by confor-
mal mapping). One such factor is given in (16) and the
effect of using this kind of self-impedance correction on
the DVC results is seen in Table II by comparing the
results labelled DVC with the corrected result labelled
DVC-s.

f=1+0.01~(1.363‘/(B-Ev—;)z+0.54 —1). (16)

In (16), the parameters are as illustrated in Fig. 3. This
factor guarantees that the DVC self impedance of a strip
symmetrically placed between ground planes (s =0) will
agree with the theoretical value, to better than 0.1 percent,
up to w/b = 4.

To check the validity of the DVC solution, several
special cases can be solved. The results are presented in the
next section. Note that since the results only depend on
relative dimensions, the units of length have been omitted.
Most test cases were done assuming typical ground place
spacings of 72 mils (1.829 mm) and a center substrate
thickness of 10 mils (0.254 mm).

III. SpEcIAL CASES

First, the case of Fig. 10 is solved. The symmetric
homogeneous striplines have an exact conformal map solu-
tion.

Three computer programs will be compared on this
problem. A program based on Kammler’s MoM [13], a
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Fig. 11. The progression to convergence for two extreme cases of Fig.

10 for MoM TTLM and DVC. The values at convergence are shown.

program based on Koul and Bhat’s TTLM equations, and
a DVC program. Two extreme cases of the configuration of
Fig. 10 will be evaluated. The first is strips 0.1 units wide
separated by 0.05 units, with a ground plane spacing of 1.0
units. The second is strips 1.0 units wide separated by 2.0
units, with a ground plane spacing of 1.0 units. The quan-
tity to be computed is the system impedance or {Z,,., Z 44 -

Fig. 11 shows how each method approaches convergence
as a function of CPU time spent. The ordinate of the graph
shows the percent deviation from the final convergence
value. Kammler’s MoM iterates four times. First it cuts
every strip in two parts, then in four, and finally in six,
then it extrapolates to a final solution. The TTLM method
achieves convergence by using an increasing number of
Fourier components. The DVC method achieves conver-
gence by dividing the strips into more parts.

Table II shows the percentage of error between the final
value obtained at convergence and the exact conformal
mapping value.
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Fig. 14. Numerical solution of offset-coupled striplines in the small
strip limit.

The practical requirement of less than 1-percent error for
typical design configurations is easily met by the DVC
method at the expense of very little CPU time.

The next test is to compare results for various techniques
applied to broadside-coupled strips in the homogeneous
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Fig. 15. Numerical solution of a suspended substrate configuration with

substrate dielectric constant €, =1.2.

case. Fig. 12 is a comparison between MoM, TTLM, and
DVC. The results are virtually identical.

Then, Shelton-offset-coupled lines in a homogeneous
medium are checked. In the large strip limit, MoM, DVC,
and Shelton’s equations are compared in Fig. 13. In the
small strip limit, MoM and DVC are compared in Fig. 14.

Finally, the suspended substrate for a center dielectric
constant of 1.2 is checked using DVC, CSS [14], and the
Coupled Suspended Substrate routines of Supercompact
[15] for the case of wide strips (worst case for DVC). The
results are given in Fig. 15. Over the range of specific cases
tested, the DVC-based program performs as well or better
than the other techniques.

1V. Two-DIELECTRIC SHELTON OFFSET-COUPLED
LINES

DuHammel Magic-T’s are known to exhibit less than
ideal isolation due to the difference in mode velocities
when the lines are abruptly separated at the end of the T
[16]. It has been proposed and empirically observed that by
lowering the center dielectric constant in this region, these
velocities can be equalized and the isolation improved. A
feasible tradeoff is to print the whole circuit in a configura-
tion with a lower center dielectric constant and to tolerate
the slight disparsion along most of the line (which is low
because the coupling is low) to achieve the benefit of
equalized velocities at the discontinuity. Such a Magic-T
has been designed and its experimental characteristics are
described in a companion paper [17].

The design is achieved as follows. Starting from the
broadside-coupled case, the strip widths are fractionally
increased and the DVC program is iterated until an offset



DAIZ: CALCULATION OF STRIP TRANSMISSION-LINE PARAMETERS

80

su\

40

LLLLLLLLLLL L LLLLS
&=25
=21

F s =25
Edge Separation (<0 For Overlap)

Wi
7 1

/7

Strip Wedth

ki o

i) of

Width and Edge to Edge Separation
3
T

2Zoe Even Mode Impedance (Dhms)
L n 4 4

, ,
50 50 N1y 80 90 100 10

Edge to Edge
Separation

B

40

Fig. 16. Design curves for a possible two-dielectric offset-coupled strip-
line configuration.

is found which brings the system impedance back to 50 £.
The widths are again increased and the cycle repeats, until
the strips are decoupled. Because of the speed of program
execution, the table of widths, offsets, and impedances can
be made as precise as possible (the values only need to be
better than the manufacturing tolerances) and the results
then splined for use in the design program.

Fig. 16 is a plot of width and offset versus even-mode
impedance of a possible geometry. When the strips are
fully overlapped in this inhomogeneous case, the imped-
ance as a function of a strip width can be compared to the
calculations of Koul and Bhat [18] and those of Bahl and
Bhartia [19]. The results are equivalent within the error
bounds observed in Table I1.

V. CONCLUSIONS

Certain boundary value problems with a low degree of
symmetry, which arise in the design of strip transmission-
line components are best solved by transforming the con-
figuration in question to a new plane where the Green
function is easier to evaluate. It is then straightforward to
take advantage of the bookkeeping abilities of computing
machines to calculate the desired parameters. In practice,
an expression for charge on a strip equal to Maxwell’s
result for an isolated strip is used in the planar geometry.
A typical strip is segmented into 80 parts and the charge is
evaluated on the odd numbered sections, while the poten-
tial is evaluated on the even numbered sections. By using a
new variational expression for the capacitance as a discrete
sum of elementary capacitances, the results obtained from
the computer program are fast and accurate to better than
1 percent in the design range of interest.
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APPENDIX
THE CAPACITANCE EXPRESSION

Consider the following quantity, where f(x, x’) is the
potential function with source at x and observer at x’

_ p(x)dx (A1)

“[ G

-

LI

° f
X

with the property that

f,po(x)f(x, x’) dx'=V, and f,po(x’) ax’'=Q, (A3)

where V, is independent of x, and so that = =C,, the
exact capacitance. Now let

I}

Then define
p,(x)dx

Lo x)

(A2)

p(x) = p,(x)+8p(x) (A4)
so that by (A1)
Z+ 6% )
p,(x) 8p(x) p
= X
* [ o)1 x) i+ [ 80(x)f (. x7) !
X X (AS)
and by (A3) :
o1 p,(x)+8p(x)
.:.+8:=70fx 5o (e (x, x ) &’ dx. (A6)
1+/x, >

Since the denominator is of the form 1+¢, € -0, ex-
pand in a Taylor series up to first order

E+8E= %{fx(po(x)+ 8p(x))

Sp(x)f(x,x)
-(1—L——~T—dlx dx} (A7)
which becomes
e 2o 80
5+ 805 = v, + v,
1 8o(x’")f(x, x’) dx'dx
-~ o], 7
1 8p(x) f(x,x’)dx"dx
—— A
7 o) ], 7 (A8)
where, by interchanging the order of integration we obtain
O .
E+AE= 2 + 72

po(x)f(x, x") dxdx’
- %fxﬁp(x’) fx ”

o o

1 j-8p(x) 8o (x’) f(x,x") dxdx’ (A9)

_..V_ox/ -
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and by (A2) |
oo 2, 00 1 N
~+8_—?0+K)—K)Ll8p(x)Vodx

—Tll—z—j;fxﬁp(x) 8o(x")f(x,x’)dxdx’ (A10)

or
) ) 1
E+SE=& —Q——Q——2 (term of order 8p?)
. V. ¥V, ¥,
(A11)
thus

E4+8E=E,+0(2) =C,+0(2).

That is, 8= is 0(2). :
Therefore, if = is the capacitance, then a variation in

p(x), the charge density, gives only a second-order varia-

“tion in =. X is variational and different from the usual

[fp(x) dx]z

C= . (A13)
[ [p(p(x) 1 (5, x) v

Physically, = corresponds to a parallel sum of elementary
capacitances.

(A12)
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